那曲檬骨新材料有限公司

您好,歡迎來電子發(fā)燒友網(wǎng)! ,新用戶?[免費注冊]

您的位置:電子發(fā)燒友網(wǎng)>源碼下載>數(shù)值算法/人工智能>

一種新的自適應(yīng)提升的概率矩陣分解算法

大小:0.74 MB 人氣: 2017-12-27 需要積分:1

  針對推薦系統(tǒng)中概率矩陣分解模型(PMF)泛化能力(對新用戶和物品的推薦性能)較差、預(yù)測準確性不高的問題,提出一種新的基于自適應(yīng)提升的概率矩陣分解算法AdaBoostPMF)。該算法首先為每個樣本分配樣本權(quán)重;然后根據(jù)PMF中的每一輪隨機梯度下降法學(xué)習(xí)用戶和物品特征向量,并計算總體預(yù)測誤差均值和標準差。從全局的角度利用AdaBoost思想自適應(yīng)調(diào)整樣本權(quán)重,使算法更注重學(xué)習(xí)預(yù)測誤差較大的樣本;最后對預(yù)測誤差分配樣本權(quán)重,讓用戶和物品特征向量找到更合適的優(yōu)化方向。相比傳統(tǒng)的PMF算法,AdaBoostPMF算法能夠?qū)㈩A(yù)測精度平均提高約2. 5%。實驗結(jié)果表明,該算法通過加權(quán)預(yù)測誤差較大的樣本,能夠較好地擬合用戶特征向量和物品特征向量,提高預(yù)測精度,可以有效地應(yīng)用于研究個性化推薦。

一種新的自適應(yīng)提升的概率矩陣分解算法

非常好我支持^.^

(0) 0%

不好我反對

(0) 0%

      發(fā)表評論

      用戶評論
      評價:好評中評差評

      發(fā)表評論,獲取積分! 請遵守相關(guān)規(guī)定!

      ?
      加多宝百家乐官网的玩法技巧和规则 | 百家乐网上公式| 芜湖市| 超级老虎机系统| 百家乐走势图研究| 百家乐官网怎样算大小| 太阳城菲律宾官方网| 百家乐官网的战术| 百家乐官网怎样下注| 百家乐官网最长的闲| 大发888真钱电玩游戏| 最好的百家乐官网娱乐场| 德州扑克牌型| 百家乐博彩桌出租| 百家乐官网投注信用最好的| 辽宁棋牌游戏大厅| 百家乐博赌场娱乐网规则| 做生意必须看风水吗| 澳门百家乐官网赌客| 乌兰县| 大发888特惠代码| 网上赌百家乐被抓应该怎么处理| 鲨鱼百家乐官网游戏平台| 石柱| 大发888网站多少| 威尼斯人娱乐城投注| 超级百家乐2龙虎斗| 百家乐官网7scs娱乐平台| 平遥县| 超级皇冠网分布图| 大发888娱乐场18| 大发888娱乐游戏技巧| 帝王百家乐新足球平台| 斗地主百家乐官网的玩法技巧和规则| 呼和浩特市| 和平县| 牌9娱乐| 棋牌赌博网站| 大发888案件| 时时博娱乐城评级| 开棋牌室赚钱吗|