那曲檬骨新材料有限公司

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示
創(chuàng)作
電子發(fā)燒友網(wǎng)>電子資料下載>電子教材>信號處理中的變貝葉斯方法

信號處理中的變貝葉斯方法

2009-02-17 | rar | 4096 | 次下載 | 免費(fèi)

資料介紹

Gaussian linear modelling cannot address current signal processing demands. In
modern contexts, such as Independent Component Analysis (ICA), progress has been
made specifically by imposing non-Gaussian and/or non-linear assumptions. Hence,
standard Wiener and Kalman theories no longer enjoy their traditional hegemony in
the field, revealing the standard computational engines for these problems. In their
place, diverse principles have been explored, leading to a consequent diversity in the
implied computational algorithms. The traditional on-line and data-intensive preoccupations
of signal processing continue to demand that these algorithms be tractable.
Increasingly, full probability modelling (the so-called Bayesian approach)—or
partial probability modelling using the likelihood function—is the pathway for design
of these algorithms. However, the results are often intractable, and so the area
of distributional approximation is of increasing relevance in signal processing. The
Expectation-Maximization (EM) algorithm and Laplace approximation, for example,
are standard approaches to handling difficult models, but these approximations
(certainty equivalence, and Gaussian, respectively) are often too drastic to handle
the high-dimensional, multi-modal and/or strongly correlated problems that are encountered.
Since the 1990s, stochastic simulation methods have come to dominate
Bayesian signal processing. Markov Chain Monte Carlo (MCMC) sampling, and related
methods, are appreciated for their ability to simulate possibly high-dimensional
distributions to arbitrary levels of accuracy. More recently, the particle filtering approach
has addressed on-line stochastic simulation. Nevertheless, the wider acceptability
of these methods—and, to some extent, Bayesian signal processing itself—
has been undermined by the large computational demands they typically make.
The Variational Bayes (VB) method of distributional approximation originates—
as does the MCMC method—in statistical physics, in the area known as Mean Field
Theory. Its method of approximation is easy to understand: conditional independence
is enforced as a functional constraint in the approximating distribution, and
the best such approximation is found by minimization of a Kullback-Leibler divergence
(KLD). The exact—but intractable—multivariate distribution is therefore factorized
into a product of tractable marginal distributions, the so-called VB-marginals.
This straightforward proposal for approximating a distribution enjoys certain optimality properties. What is of more pragmatic concern to the signal processing community,
however, is that the VB-approximation conveniently addresses the following
key tasks:
1. The inference is focused (or, more formally, marginalized) onto selected subsets
of parameters of interest in the model: this one-shot (i.e. off-line) use of the VB
method can replace numerically intensive marginalization strategies based, for
example, on stochastic sampling.
2. Parameter inferences can be arranged to have an invariant functional form
when updated in the light of incoming data: this leads to feasible on-line
tracking algorithms involving the update of fixed- and finite-dimensional statistics.
In the language of the Bayesian, conjugacy can be achieved under the
VB-approximation. There is no reliance on propagating certainty equivalents,
stochastically-generated particles, etc.
Unusually for a modern Bayesian approach, then, no stochastic sampling is required
for the VB method. In its place, the shaping parameters of the VB-marginals are
found by iterating a set of implicit equations to convergence. This Iterative Variational
Bayes (IVB) algorithm enjoys a decisive advantage over the EM algorithm
whose computational flow is similar: by design, the VB method yields distributions
in place of the point estimates emerging from the EM algorithm. Hence, in common
with all Bayesian approaches, the VB method provides, for example, measures of
uncertainty for any point estimates of interest, inferences of model order/rank, etc.
The machine learning community has led the way in exploiting the VB method
in model-based inference, notably in inference for graphical models. It is timely,
however, to examine the VB method in the context of signal processing where, to
date, little work has been reported. In this book, at all times, we are concerned with
the way in which the VB method can lead to the design of tractable computational
schemes for tasks such as (i) dimensionality reduction, (ii) factor analysis for medical
imagery, (iii) on-line filtering of outliers and other non-Gaussian noise processes, (iv)
tracking of non-stationary processes, etc. Our aim in presenting these VB algorithms
is not just to reveal new flows-of-control for these problems, but—perhaps more
significantly—to understand the strengths and weaknesses of the VB-approximation
in model-based signal processing. In this way, we hope to dismantle the current psychology
of dependence in the Bayesian signal processing community on stochastic
sampling methods.Without doubt, the ability to model complex problems to arbitrary
levels of accuracy will ensure that stochastic sampling methods—such as MCMC—
will remain the golden standard for distributional approximation. Notwithstanding
this, our purpose here is to show that the VB method of approximation can yield
highly effective Bayesian inference algorithms at low computational cost. In showing
this, we hope that Bayesian methods might become accessible to a much broader
constituency than has been achieved to date。
下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1電子電路原理第七版PDF電子教材免費(fèi)下載
  2. 0.00 MB  |  1490次下載  |  免費(fèi)
  3. 2單片機(jī)典型實(shí)例介紹
  4. 18.19 MB  |  92次下載  |  1 積分
  5. 3S7-200PLC編程實(shí)例詳細(xì)資料
  6. 1.17 MB  |  27次下載  |  1 積分
  7. 4筆記本電腦主板的元件識別和講解說明
  8. 4.28 MB  |  18次下載  |  4 積分
  9. 5開關(guān)電源原理及各功能電路詳解
  10. 0.38 MB  |  10次下載  |  免費(fèi)
  11. 6基于AT89C2051/4051單片機(jī)編程器的實(shí)驗(yàn)
  12. 0.11 MB  |  4次下載  |  免費(fèi)
  13. 7藍(lán)牙設(shè)備在嵌入式領(lǐng)域的廣泛應(yīng)用
  14. 0.63 MB  |  3次下載  |  免費(fèi)
  15. 89天練會電子電路識圖
  16. 5.91 MB  |  3次下載  |  免費(fèi)

本月

  1. 1OrCAD10.5下載OrCAD10.5中文版軟件
  2. 0.00 MB  |  234313次下載  |  免費(fèi)
  3. 2PADS 9.0 2009最新版 -下載
  4. 0.00 MB  |  66304次下載  |  免費(fèi)
  5. 3protel99下載protel99軟件下載(中文版)
  6. 0.00 MB  |  51209次下載  |  免費(fèi)
  7. 4LabView 8.0 專業(yè)版下載 (3CD完整版)
  8. 0.00 MB  |  51043次下載  |  免費(fèi)
  9. 5555集成電路應(yīng)用800例(新編版)
  10. 0.00 MB  |  33562次下載  |  免費(fèi)
  11. 6接口電路圖大全
  12. 未知  |  30320次下載  |  免費(fèi)
  13. 7Multisim 10下載Multisim 10 中文版
  14. 0.00 MB  |  28588次下載  |  免費(fèi)
  15. 8開關(guān)電源設(shè)計(jì)實(shí)例指南
  16. 未知  |  21539次下載  |  免費(fèi)

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935053次下載  |  免費(fèi)
  3. 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
  4. 78.1 MB  |  537791次下載  |  免費(fèi)
  5. 3MATLAB 7.1 下載 (含軟件介紹)
  6. 未知  |  420026次下載  |  免費(fèi)
  7. 4OrCAD10.5下載OrCAD10.5中文版軟件
  8. 0.00 MB  |  234313次下載  |  免費(fèi)
  9. 5Altium DXP2002下載入口
  10. 未知  |  233045次下載  |  免費(fèi)
  11. 6電路仿真軟件multisim 10.0免費(fèi)下載
  12. 340992  |  191183次下載  |  免費(fèi)
  13. 7十天學(xué)會AVR單片機(jī)與C語言視頻教程 下載
  14. 158M  |  183277次下載  |  免費(fèi)
  15. 8proe5.0野火版下載(中文版免費(fèi)下載)
  16. 未知  |  138039次下載  |  免費(fèi)
百家乐视频视频| 威尼斯人娱乐备用622| 百家乐官网开庄概率| 百家乐胜率在哪| 娱乐城注册送彩金100| 澳门百家乐官网赢钱秘| 大发888 大发888娱乐城 大发888娱乐场 | 大发888真人游戏| 网络百家乐官网开户网| 菲律宾沙龙国际| 圆梦城百家乐娱乐城| 百家乐官网扑克桌布| 百家乐好不好| 请问下百家乐官网去哪个娱乐城玩最好呢| 大发888casino下载| 百家乐之对子的技巧| 百家乐官网压钱技巧| 大发888娱乐城游戏下载| 百家乐有真假宝单吗| 网上百家乐官网哪家最好| 元游棋牌游戏大厅| 百家乐在线娱乐平台| 怎样玩百家乐官网的玩法技巧和规则 | 川宜百家乐注册号| 优博平台网址| 大发888安装包| 金矿百家乐的玩法技巧和规则 | 忻城县| 大发8888游戏平台| 济州岛百家乐的玩法技巧和规则| 门赌场百家乐的规则| 保单百家乐技巧| 百家乐假在哪里| 大赢家百家乐官网66| bet365娱乐城注册| 大发888娱乐城lm0| 太阳城橙翠园| 百家乐书| 送彩金百家乐平台| 钱隆百家乐的玩法技巧和规则 | 百家乐官网程序开户发|