那曲檬骨新材料有限公司

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示
電子發燒友網>電子資料下載>電子資料>PyTorch教程16.7之自然語言推理:微調BERT

PyTorch教程16.7之自然語言推理:微調BERT

2023-06-05 | pdf | 0.22 MB | 次下載 | 免費

資料介紹

在本章前面的部分中,我們為 SNLI 數據集上的自然語言推理任務(如第 16.4 節所述)設計了一個基于注意力的架構(第16.5節)。現在我們通過微調 BERT 重新審視這個任務。正如16.6 節所討論的 ,自然語言推理是一個序列級文本對分類問題,微調 BERT 只需要一個額外的基于 MLP 的架構,如圖 16.7.1所示。

https://file.elecfans.com/web2/M00/A9/CD/poYBAGR9POGANyPIAAKGzmOF458734.svg

圖 16.7.1本節將預訓練的 BERT 提供給基于 MLP 的自然語言推理架構。

在本節中,我們將下載預訓練的小型 BERT 版本,然后對其進行微調以在 SNLI 數據集上進行自然語言推理。

import json
import multiprocessing
import os
import torch
from torch import nn
from d2l import torch as d2l
import json
import multiprocessing
import os
from mxnet import gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

16.7.1。加載預訓練的 BERT

我們已經在第 15.9 節第 15.10 節中解釋了如何在 WikiText-2 數據集上預訓練 BERT (請注意,原始 BERT 模型是在更大的語料庫上預訓練的)。如15.10 節所述,原始 BERT 模型有數億個參數。在下文中,我們提供了兩個版本的預訓練 BERT:“bert.base”與需要大量計算資源進行微調的原始 BERT 基礎模型差不多大,而“bert.small”是一個小版本方便演示。

d2l.DATA_HUB['bert.base'] = (d2l.DATA_URL + 'bert.base.torch.zip',
               '225d66f04cae318b841a13d32af3acc165f253ac')
d2l.DATA_HUB['bert.small'] = (d2l.DATA_URL + 'bert.small.torch.zip',
               'c72329e68a732bef0452e4b96a1c341c8910f81f')
d2l.DATA_HUB['bert.base'] = (d2l.DATA_URL + 'bert.base.zip',
               '7b3820b35da691042e5d34c0971ac3edbd80d3f4')
d2l.DATA_HUB['bert.small'] = (d2l.DATA_URL + 'bert.small.zip',
               'a4e718a47137ccd1809c9107ab4f5edd317bae2c')

預訓練的 BERT 模型都包含一個定義詞匯集的“vocab.json”文件和一個預訓練參數的“pretrained.params”文件。我們實現以下load_pretrained_model 函數來加載預訓練的 BERT 參數。

def load_pretrained_model(pretrained_model, num_hiddens, ffn_num_hiddens,
             num_heads, num_blks, dropout, max_len, devices):
  data_dir = d2l.download_extract(pretrained_model)
  # Define an empty vocabulary to load the predefined vocabulary
  vocab = d2l.Vocab()
  vocab.idx_to_token = json.load(open(os.path.join(data_dir, 'vocab.json')))
  vocab.token_to_idx = {token: idx for idx, token in enumerate(
    vocab.idx_to_token)}
  bert = d2l.BERTModel(
    len(vocab), num_hiddens, ffn_num_hiddens=ffn_num_hiddens, num_heads=4,
    num_blks=2, dropout=0.2, max_len=max_len)
  # Load pretrained BERT parameters
  bert.load_state_dict(torch.load(os.path.join(data_dir,
                         'pretrained.params')))
  return bert, vocab
def load_pretrained_model(pretrained_model, num_hiddens, ffn_num_hiddens,
             num_heads, num_blks, dropout, max_len, devices):
  data_dir = d2l.download_extract(pretrained_model)
  # Define an empty vocabulary to load the predefined vocabulary
  vocab = d2l.Vocab()
  vocab.idx_to_token = json.load(open(os.path.join(data_dir, 'vocab.json')))
  vocab.token_to_idx = {token: idx for idx, token in enumerate(
    vocab.idx_to_token)}
  bert = d2l.BERTModel(len(vocab), num_hiddens, ffn_num_hiddens, num_heads,
             num_blks, dropout, max_len)
  # Load pretrained BERT parameters
  bert.load_parameters(os.path.join(data_dir, 'pretrained.params'),
             ctx=devices)
  return bert, vocab

為了便于在大多數機器上進行演示,我們將在本節中加載和微調預訓練 BERT 的小型版本(“bert.small”)。在練習中,我們將展示如何微調更大的“bert.base”以顯著提高測試準確性。

devices = d2l.try_all_gpus()
bert, vocab = load_pretrained_model(
  'bert.small', num_hiddens=256, ffn_num_hiddens=512, num_heads=4,
  num_blks=2, dropout=0.1, max_len=512, devices=devices)
Downloading ../data/bert.small.torch.zip from http://d2l-data.s3-accelerate.amazonaws.com/bert.small.torch.zip...
devices = d2l.try_all_gpus()
bert, vocab = load_pretrained_model(
  'bert.small', num_hiddens=256, ffn_num_hiddens=512, num_heads=4,
  num_blks=2, dropout=0.1, max_len=512, devices=devices)
Downloading ../data/bert.small.zip from http://d2l-data.s3-accelerate.amazonaws.com/bert.small.zip...

16.7.2。微調 BERT 的數據集

對于 SNLI 數據集上的下游任務自然語言推理,我們定義了一個自定義的數據集類SNLIBERTDataset在每個示例中,前提和假設形成一對文本序列,并被打包到一個 BERT 輸入序列中,如圖 16.6.2所示。回想第 15.8.4 節 ,段 ID 用于區分 BERT 輸入序列中的前提和假設。對于 BERT 輸入序列 ( max_len) 的預定義最大長度,輸入文本對中較長者的最后一個標記會不斷被刪除,直到max_len滿足為止。為了加速生成用于微調 BERT 的 SNLI 數據集,我們使用 4 個工作進程并行生成訓練或測試示例。

class SNLIBERTDataset(torch.utils.data.Dataset):
  def __init__(self, dataset, max_len, vocab=None):
    all_premise_hypothesis_tokens = [[
      p_tokens, h_tokens] for p_tokens, h_tokens in zip(
      *[d2l.tokenize([s.lower() for s in sentences])
       for sentences in dataset[:2]])]

    self.labels = torch.tensor(dataset[2])
    self.vocab = vocab
    self.max_len = max_len
    (self.all_token_ids, self.all_segments,
     self.valid_lens) = self._preprocess(all_premise_hypothesis_tokens)
    print('read ' + str(len(self.all_token_ids)) + ' examples')

  def _preprocess(self, all_premise_hypothesis_tokens):
    pool = multiprocessing.Pool(4) # Use 4 worker processes
    out = pool.map(self._mp_worker, all_premise_hypothesis_tokens)
    all_token_ids = [
      token_ids for token_ids, segments, valid_len in out]
    all_segments = [segments for token_ids, segments, valid_len in out]
    valid_lens = [valid_len for token_ids, segments, valid_len in out]
    return (torch.tensor(all_token_ids, dtype=torch.long),
        torch.tensor(all_segments, dtype=torch.long),
        torch.tensor(valid_lens))

  def _mp_worker(self, premise_hypothesis_tokens):
    p_tokens, h_tokens = premise_hypothesis_tokens
    self._truncate_pair_of_tokens(p_tokens, h_tokens)
    tokens, segments = d2l.get_tokens_and_segments(p_tokens, h_tokens)
    token_ids = self.vocab[tokens] + [self.vocab['']] \
               * (self.max_len - len(tokens))
    segments = segments + [0] * (self.max_len - len(segments))
    valid_len = len(tokens)
    return token_ids, segments, valid_len

  def _truncate_pair_of_tokens(self, p_tokens, h_tokens):
    # Reserve slots for '', '', and '' tokens for the BERT
    # input
    while len(p_tokens) + len(h_tokens) > self.max_len - 3:
      if len(p_tokens) > len(h_tokens):
        p_tokens.pop()
      else:
        h_tokens.pop()

  def __getitem__(self, idx):
    return (self.all_token_ids[idx], self.all_segments[idx],
        self.valid_lens[idx]), self.labels[idx]

  def __len__(self):
    return len(self.all_token_ids)
class SNLIBERTDataset(gluon.data.Dataset):
  def __init__(self, dataset, max_len, vocab=None):
    all_premise_hypothesis_tokens = [[
      p_tokens, h_tokens
下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1山景DSP芯片AP8248A2數據手冊
  2. 1.06 MB  |  532次下載  |  免費
  3. 2RK3399完整板原理圖(支持平板,盒子VR)
  4. 3.28 MB  |  339次下載  |  免費
  5. 3TC358743XBG評估板參考手冊
  6. 1.36 MB  |  330次下載  |  免費
  7. 4DFM軟件使用教程
  8. 0.84 MB  |  295次下載  |  免費
  9. 5元宇宙深度解析—未來的未來-風口還是泡沫
  10. 6.40 MB  |  227次下載  |  免費
  11. 6迪文DGUS開發指南
  12. 31.67 MB  |  194次下載  |  免費
  13. 7元宇宙底層硬件系列報告
  14. 13.42 MB  |  182次下載  |  免費
  15. 8FP5207XR-G1中文應用手冊
  16. 1.09 MB  |  178次下載  |  免費

本月

  1. 1OrCAD10.5下載OrCAD10.5中文版軟件
  2. 0.00 MB  |  234315次下載  |  免費
  3. 2555集成電路應用800例(新編版)
  4. 0.00 MB  |  33566次下載  |  免費
  5. 3接口電路圖大全
  6. 未知  |  30323次下載  |  免費
  7. 4開關電源設計實例指南
  8. 未知  |  21549次下載  |  免費
  9. 5電氣工程師手冊免費下載(新編第二版pdf電子書)
  10. 0.00 MB  |  15349次下載  |  免費
  11. 6數字電路基礎pdf(下載)
  12. 未知  |  13750次下載  |  免費
  13. 7電子制作實例集錦 下載
  14. 未知  |  8113次下載  |  免費
  15. 8《LED驅動電路設計》 溫德爾著
  16. 0.00 MB  |  6656次下載  |  免費

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935054次下載  |  免費
  3. 2protel99se軟件下載(可英文版轉中文版)
  4. 78.1 MB  |  537798次下載  |  免費
  5. 3MATLAB 7.1 下載 (含軟件介紹)
  6. 未知  |  420027次下載  |  免費
  7. 4OrCAD10.5下載OrCAD10.5中文版軟件
  8. 0.00 MB  |  234315次下載  |  免費
  9. 5Altium DXP2002下載入口
  10. 未知  |  233046次下載  |  免費
  11. 6電路仿真軟件multisim 10.0免費下載
  12. 340992  |  191187次下載  |  免費
  13. 7十天學會AVR單片機與C語言視頻教程 下載
  14. 158M  |  183279次下載  |  免費
  15. 8proe5.0野火版下載(中文版免費下載)
  16. 未知  |  138040次下載  |  免費
澳门百家乐官网怎么才能赢钱| 优博平台| 黄金城百家乐官网苹果版| 棋牌休闲游戏| 百家乐定位膽技巧| 澳门百家乐官网娱乐城信誉如何 | 百家乐官网庄闲赢负表| 北京太阳城老年公寓| 百家乐游戏机子| 百家乐官网一拖三| 福清市| 大发888娱乐城主页| 百家乐英皇娱乐场| 做生意怎样看风水| 百家乐官网破解策略| 欢乐谷娱乐城开户| 网上百家乐指| 至尊百家乐官网facebook| 威尼斯人娱乐网网上百家乐| 巴比伦百家乐官网的玩法技巧和规则| 绥棱县| JJ百家乐的玩法技巧和规则| 百家乐官网视频网络游戏| 大发娱乐场官网| 百家乐鞋业| 百家乐官网技巧看| 百家乐官网书| 苗栗市| 大发888官方df888gfxzylc8| 豪华百家乐桌子| 百家乐官网策略网络游戏信誉怎么样 | 百家乐官网有没有攻略| 海南博彩bocai0898| 扑克百家乐麻将筹码防伪| 百家乐tt娱乐城| 百家乐官网群sun811.com| 鄂尔多斯市| 太阳城88娱乐城| 粤港澳百家乐娱乐| 百家乐是怎样算牌| 百家乐投注网站|